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We use the numerical renormalization group method to investigate the spectral properties of a single-
impurity Anderson model with a gap � across the Fermi level in the conduction-electron spectrum. For any
finite ��0, at half filling the ground state of the system is always a doublet. Away from half filling a quantum
phase transition �QPT� occurs as function of the gap value �, and the system evolves from the strong-coupling
�SC� Kondo-type state, corresponding to ���C toward a localized moment �LM� regime for ���C. The
opening of the gap leads to the formation of one �two� bound states when the system is in the SC �LM� regime.
The evolution across the QPT of their positions and the corresponding weights together with the dynamic
properties of the model are investigated.
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I. INTRODUCTION

One of the hallmarks of the Kondo effect1 is the raise of a
narrow resonance, at the Fermi level, in the spectral-density
function of a magnetic impurity embedded into a metallic
host. The width of the resonance is proportional to the so-
called Kondo temperature TK, which is the characteristic en-
ergy scale. Below TK the impurity spin is completely
screened into a singlet by the host material. Below the
Kondo scale �T�TK�, the low-temperature properties, such
as the resistivity, spin susceptibility, or specific heat are prop-
erly described in terms of Landau theory2 of the Fermi liq-
uid.

The simplest approach to capture the Kondo effect is
through the Anderson model.3 It was used initially to de-
scribe the formation of the localized moments �LMs� in me-
tallic hosts. The model has inspired a lot of theoretical work,
and a multitude of analytical and numerical methods was
developed.1 One of them, the numerical renormalization
group4–6 �NRG�, originally proposed by Wilson, is known as
one of the most reliable and accurate approach to capture the
low temperature, low-energy physics of the model. Later,
with the increase in the computing power, NRG was success-
fully extended to a broad range of more exotic quantum im-
purity models7 such as the two-channel Kondo problem,8

coupled magnetic moments,9 the coupling to a superconduct-
ing host,10 or the soft-gap model.11

In the present work we address a slightly different prob-
lem. That of a magnetic impurity in a degenerate semicon-
ductor host which presents a gap across the Fermi level in
the conduction-electron spectrum. In the normal Anderson
model the conduction band has a flat density of states �DOS�
at the Fermi level and the Kondo temperature is the only
energy scale of the problem. The opening of a gap � in the
conduction-band spectrum introduces a new energy scale.
The first question that arises is whether the Kondo state will
survive? The problem was originally addressed by using dif-
ferent techniques: the quantum Monte Carlo,12 density-
matrix renormalization group �DMRG�,13 Poor Man’s scal-
ing, and 1 /N expansion14 with no consensus reached. Later,

Chen and Jayaprakash15 have used NRG method for the
same problem. It was found that at half filling, any gap �
�0 changes the ground state to a doublet. Away from half
filling and for large enough gaps the Kondo state does not
survive. More recently, the results obtained within the NRG
framework were confirmed by using a local-moment
approach.16

The main goal of the present work is to extend the analy-
sis of the model and to investigate its dynamic properties and
their evolution across the quantum phase transition �QPT�. In
Sec. II we present the theoretical model, then the results for
the spectral properties are presented in Sec. III. We give the
conclusions in Sec. IV.

II. MODEL AND NUMERICAL APPROACH

To describe a local, quantum impurity state, coupled to a
conduction band we use the generic Anderson model

H = �
k,�

�kck,�
† ck,� + �d�

�

d�
†d� + U�

�

nd↑nd↓

+ V�
k,�

�ck,�
† d� + d�

†ck,�� . �1�

Here �k is the host band dispersion, which is treated as a
noninteracting one, �d is the impurity-level energy, U is the
on-site Coulomb energy at the impurity site, and V is the
hybridization-matrix element of the local impurity orbitals
with the band states, which, in the present approach, is con-
sidered momentum and spin independent. The number opera-
tor nd�=d�

†d�, describes the occupation of the impurity level
for spin-� electrons. The mixing of impurity level with the
host states is generically described by the hybridization func-
tion ����=�R���+ i�I���=V2�k��−�k+ i� sgn����−1. In
general �I��� can be related to the density of states of the
host band: �I���=	V2����. In our model, a gap ��0 is
present in the density of states. Then, �I��� has the form

�I��� = 
����� − ����D − ���� �2�

with 2D the bandwidth of the host band. The normal Ander-
son model with a flat density of states is recovered in the
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limit of zero gap �→0, in which case the properly normal-
ized density of states is ����=1 /2D for �� �−D ,D� and the
broadening function becomes 
=	V2 /2D. In the followings
we will consider D as the energy unit. The real part of the
hybridization function is obtained through the Hilbert trans-
form as

�R��� = −



	
�ln�� − D

� − �
� − ln�� + D

� + �
�	


 −



	
ln�� + �

� − �
�, ��� � D . �3�

The region of relevance corresponds to small gap values,
of the order of Kondo temperature �we use the Haldane’s
expression for the Kondo temperature,17 so it is properly
defined only in the limit of zero gap, �=0�. We are mostly
interested in the dynamical properties of the model. These
are best described by the single-particle, retarded Green’s
function of the impurity site: Gret�t− t��
=−i��d��t� ,d�

†�t�����t− t��. In general, the time-ordered
Green’s function of the interacting problem is given by the
Dyson equation: G���= �G0���−����−1, in terms of the
noninteracting, �U=0�, Green’s function G0���= ��−�d
−�����−1 and of the self-energy ���. Then, the spectral
representation A���=−1 /	ImGret��� can be readily
obtained.

Away from the half filling it can be readily shown,18 by
the simple perturbation theory at the Hartree-Fock level, that
outside the gap, ������� both real and imaginary parts of the
self-energy are nonzero, so the spectrum is continuum. On
the other hand inside the gap, ������� the imaginary part of
the self-energy vanishes. Because of that, the d-level Green’s
function has a single pole inside the gap. This pole corre-
sponds to a resonant state with a lifetime inverse propor-
tional with the imaginary part of the self-energy. Therefore, it
corresponds to a real bound state with infinite lifetime. The
position of the bound state �Eb� can be obtained by solving
the equation Gret

−1�Eb�=0 for Eb. At the noninteracting level,
�neglecting the self-energy corrections� the bound-state en-
ergy is determined from

Eb − �d = �R�Eb� . �4�

Away from the half filling this equation has always only one
solution. When the self-energy corrections are included, it
only leads to a renormalization of the local energy �̃d=�d
+Re �Eb�, otherwise, the same scenario holds, and still a
single bound state is formed in the gap, but with the position
slightly shifted.

At half filling a more careful analysis is necessary. At the
noninteracting level we do expect a single bound state to
appear exactly at zero energy. However, the same perturba-
tive analysis gives for the imaginary part of the self-energy
inside the gap: Im�������� and by the Hilbert transform
the real part becomes Re����1 /�. Using now Eq. �4�, but
with the self-energy correction included, it can be shown that
at half filling, a pair of two, particle-hole symmetric poles
are formed inside the gap.

The perturbative approach described above provides us
with helpful information relative to the formation of the

bound states. Regardless of its simplicity it has its own limi-
tations. Computing the self-energy in the second-order per-
turbation theory in U, the spectral function of the impurity
site can be resolved only at a qualitative level. More than
that, in the large-U limit the perturbation theory is supposed
to fail. The previous analysis indicates that there is a funda-
mental difference between symmetric and asymmetric cases,
but we can only speculate that the particle-symmetric case
cannot be perturbatively connected to the noninteracting
limit while the asymmetric model does. At the same time no
information relative to the nature of the ground state can be
extracted.

A much more rigorous analysis of the problem is possible
by using the NRG method,20 which is a reliable approach to
study a variety of quantum impurity models. It consists of a
logarithmic discretization of the host band into intervals of
the form ��−�n+1� ,�−n� with � some positive number larger
than 1, �usually �
2� and a mapping of the original Hamil-
tonian �1� into a one-dimensional tight-binding chain �Wil-
son chain� such that the hopping couplings between nearest
neighbors acquire a � dependence of the form ��−n/2, fol-
lowed by an iterative diagonalization of the chain with one
extra site added at each iteration step. In general the on-site
energies in the Wilson chain are also nonzero, but it can be
analytically shown that for a host density of states with
electron-hole symmetry they do vanish. The continuous limit
corresponds to �→1 and for any ��1 the NRG is an ap-
proximation. Keeping � small �
1.5� the computing time
increases a lot while having a large � ��3.0� the accuracy of
the calculation is compromised, especially for spectral prop-
erties at large energies. Therefore, in the present work, we
present results for �=2. There is major difference in the way
the NRG is used when a gap is opened in the density of
states. For example, at T=0, in the normal Anderson model it
is, in principle, possible to increase the number of iterations
to any value, but usually an upper limit is chosen such that,
once the fixed point is reached, the NRG stops after a few
iterations. In principle, the more iterations we use, the better
the spectral functions at the Fermi level are resolved. On the
other hand, for a gapped Anderson model the threshold �
fixes somehow the maximum number of iterations. Because
there are no longer states in the host band below �, we need
to stop the NRG procedure at a given iteration Nmax which is
gap dependent: Nmax=N��� such that the typical energy scale
�−�Nmax−1�/2 is not much smaller than the gap �. As a techni-
cal detail, we can take advantage of the symmetries of the
model and classify the eigenstates of the Hamiltonian into
multiplets. Here, we have used two quantum numbers to la-
bel the multiplets: �i� Q—the number of particle measured
relative to the one particle per site; �ii� S—the total spin. In
the normal Anderson model the relevant energy scale is the
Kondo temperature. It can be defined through the Haldane’s
expression:17 TK

0 =�U
 /2e	�d��d+U�/2U
. The gap � introduces
a new energy scale. As we will see next, the relevant, dimen-
sionless parameter that characterize the QPT is � /TK

0 .

III. SPECTRAL FUNCTIONS AND THE PHASE DIAGRAM

We will start with a qualitative description of the renor-
malization group flow diagrams. These are displayed in Fig.
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1. We will consider first the symmetrical model. For a nor-
mal Anderson model the strong-coupling �SC� fixed point is
the only stable one, and the ground state is always a degen-
erate Kondo singlet characterized by the quantum numbers
�Q ,S�= ��1,0�. When a gap is opened in the density of
states, the flow diagram completely changes. The SC fixed
point becomes unstable and the flow is toward the LM fixed
point. At the same time the ground state changes to a
doublet—�0, 1

2 �, irrespective of the value of the gap, so for
the symmetric model the critical gap that describes the tran-
sition is �C=0.

Away from the half filling, and for the normal Anderson
model ��=0�, probably the most interesting limit corre-
sponds to the case when 
�−�d�U. Correspondingly, the
flow is toward the frozen impurity �FI� fixed point, which on
the other hand can be identified with the SC fixed point.5

When a gap starts to open in the density of states the FI
remains stable as long as the gap is smaller than a critical
value �C. For gap values larger than �C ��C depends on the
asymmetry of the problem, see Fig. 4� the FI becomes un-
stable and the flow is toward the LM regime. At the same
time the ground state changes accordingly as in the case of
symmetrical model from a singlet to a doublet.

In the following we will present results for the impurity
spectral function, in these regimes. In general, within the
NRG framework, the spectral function is given as a weighted
sum7 of � functions of the form

A��� = �
i

Wi��� − �i� , �5�

where the weights Wi can be computed directly with the
NRG. To get a smooth spectral function the � functions need
to be replaced by some smooth kernels such that the spectral
sum rule �d�A���=1 remains valid. When investigating the
spectral properties of the gapped model we have used a
slightly modified broadening procedure such that only the
delta peaks which correspond to energies outside the gap
������� are broadened while for energies inside the gap
������� the weights Wb and the corresponding bound-state
energies Eb are extracted directly from the excitation spec-
trum, so the spectral function becomes

A��� = Acont��������� + �
b

Wb��� − Eb�������. �6�

We will discuss separately the results for the cases when
the system is at/away from half filling. In Fig. 2 we present
typical results for the spectral function of the d level of a
symmetrical model. The presence of the gap in DOS pre-
serves the electron-hole symmetry, so the spectrum remains
symmetric. The black solid line is the spectral function for
the normal Anderson model which develops the usual Kondo
resonance below TK

0 . Below the Kondo temperature the lo-
calized spin is screened by the conduction electrons, and the
ground state is a singlet corresponding to S=0. The opening
of a gap in the density of states changes the physics dramati-
cally. First of all, because no states are longer available at the
Fermi level below the gap edge �, the localized spin is no
longer Kondo quenched into a singlet, and the ground state
changes to a doublet �0, 1

2 �.
At the same time, the spectral function A��� develops a
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FIG. 3. �Color online� The positions of the bound states and the
corresponding spectral weights rescaled with the Kondo tempera-
ture TK
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FIG. 1. Renormalization group flow diagram at T=0 for the
gapped Anderson model, when the system is away from half filling.
When ���C the SC fixed point is stable while for ���C the LM
becomes the stable fixed point. At half filling �C=0 so LM is stable
irrespective of the value ��0.
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gap and vanishes for energies ����� while two symmetric
bound states at �Eb with exactly the same weights develop
inside the gap �Eb���. Although the ground state changes
from a singlet to a doublet for any ��TK

0 there are some
reminiscence features of the Kondo peak and the behavior at
energies ����� resembles that of the normal Anderson
model. For small enough gap values the bound states are
deep inside the gap. Increasing �, the Eb moves toward the
band edge. At the same time there is some transfer of spectral
weight from the bound states to the continuum states. In the
limit of ��TK

0 the bound states merge with the continuum,
their spectral weights becoming vanishingly small and it can-
not be resolved any more. In Fig. 2 the positions of the
bound states are indicated by up arrows while their magni-
tudes are rescaled with the gap value: 	
Wb /�. In Fig. 3 the
evolution of the rescaled bound-state energy and weights as

function of the gap is plotted in two different ways: �i� res-
caled with TK

0 —the Kondo temperature; �ii� rescaled with
�—the value of the gap. We have found that the energies Eb
and the corresponding rescaled weights wb=	
Wb satisfy
the following scaling equations in the limit ��TK

0 :

Eb

TK
0 � � �

TK
0 �2

wb

TK
0 � � �

TK
0 � . �7�

This scaling behavior can be understood in terms of an
effective Hamiltonian. First the Anderson Hamiltonian �1� is
mapped by the help of the Schrieffer-Wolff transformations19

into a Kondo problem and then a low-energy, effective
Hamiltonian �at the energy scale �� is constructed, in which
the impurity spin is coupled to the lowest electron/hole lev-
els. The Hamiltonian is described in terms of an effective
exchange coupling Jef f �TK

0 and a potential-like scattering
term Kef f �K0TK

0 . In the presence of electron-hole symmetry,
and in the LM regime, the scattering term vanishes: Kef f =0,
while only the exchange term survives. For a finite gap � the
system is always in a LM state with a ground state in the
�0, 1

2 � sector while the first excited state is in the ��1,0�
sector. The energy Eb of the bound state15 corresponds to the
transition between the lowest energies within these sectors
��0, 1

2 �↔ ��1,0�� and this energy difference scales as Eb

E��1,0�−E�0,1/2���2 /TK

0 .
Next, we will describe the quantum phase transition when

the system is away from the half filling. Here the SC regime
is much robust as compared to the symmetric case and the
transition occurs always at a finite critical gap, �C, such that
for ���C the system is in the SC regime and for ���C the
flow is toward the LM fixed point. The critical gap �C de-
pends on the asymmetry parameter �=1+2�d /U. In Fig. 4
we present the separation between these two regimes in the
parameter space �� ,�C /TK

0 �. We represent our numerical re-
sults for the critical values �symbols� together with the ones
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=U /	
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function of � for 0.5���0.75.

-8 -4 0 4 8
0

0.5

1

1.5

π
Γ

Α
(ω

)

-8 -4 0 4 8
0

0.5

1

1.5

-8 -4 0 4 8
ω / δ

0

0.5

1

1.5

π
Γ

Α
(ω

)

-8 -4 0 4 8
ω / δ

0

0.5

1

1.5

δ / T
0

K
= 3.5 x 10

-4 δ / T
0

K
= 5.7 x 10

-3

δ / T
0

K
= 0.57 δ / T

0

K
= 2.13

FIG. 5. Spectral functions for the asymmetri-
cal case, close to the Fermi energy. In the upper
panel the system is in the strong-coupling regime,
characterized by ��TK

0 . In the lower panel the
system is in the local-moment regime with the
gap � of the order of TK

0 or larger. The arrows
indicate the positions of the bound states and
their amplitude is rescaled to 	
Wb /�. In the SC
regime a single resonance develops while in the
LM regime there are two. The dotted line in the
left upper panel is the spectral function for the
normal Anderson model.

C. P. MOCA AND A. ROMAN PHYSICAL REVIEW B 81, 235106 �2010�

235106-4



obtained by using the local-moment approach16 �solid lines�.
Close to the half filling the agreement between the methods
is almost perfect, and only for ��0.6–0.7 deviations start to
appear. The method of extracting the critical gap in the
present approach is to some extend different from the one
used in the soft-gap Anderson model11 where the phase tran-
sition boundaries can be extracted directly from the NRG
flow diagram. This kind of analysis is not possible in our
approach since the NRG gets truncated at the gap edge. In
our approach the phase boundary was obtained by changing
the asymmetry parameter for a fixed gap and counting the
number of bound states in the gap. We believe that there is
no other more efficient procedure for constructing the phase
diagram for this model. More exactly, we have fixed the gap
value � as well as the Coulomb interaction U, and we have
changed the asymmetry parameter �=1+2�d /U. When the
system is in the SC regime, away from the half filling, there
is always one bound state in the gap, but decreasing the
asymmetry, at some point we cross the phase boundary and
the system evolves toward the LM fixed point with two
bound states in the gap. To give a quantitative description of
the transition, in terms of the spectral properties, when the
gap is changed smoothly from �=0 to some large, ��TK

0 ,
value, we have focused on the regime with U=0.4, �d=
−0.05, and 
=0.01. For this set of parameters the Kondo
temperature is TK

0 =4.6�10−5 and the critical gap is found
numerically to be �C=0.045TK

0 . In this particular regime
�corresponding to 
�−�d�U� and for the normal Anderson
model, below the Kondo temperature, the flow is always
toward the SC fixed point, and the ground state is a nonde-

generate singlet within the �−1,0� channel. If we steadily
increase �, when ��TK

0 , the ground state remains a singlet.
At the same time a gap is opening in the spectral function
A��� below energies �����. In the high-energy region, ���
��, A��� has a similar structure with that corresponding to
the normal Anderson model. The Kondo resonance forms
below TK

0 while the Hubbard side peaks develop at similar
energies. In this SC regime only one bound state develops
inside the gap �top layer in Fig. 5� in agreement with the
perturbation theory. As approaching the transition �→�C

− the
energy of the bound state is shifted slowly toward the Fermi
energy �Eb→0� �see Fig. 6�. When � becomes larger than �C
the SC is no longer the fixed point, and the flow is toward the
LM regime. The ground state changes to a doublet: �0, 1

2 �
while two nonsymmetrical bound states develop in the gap.
In Fig. 6 we present the evolution of the bound-states energy
together with their characteristic weights across the transition
point. On the LM side of the transition the localized states
start to loose their weights as the gap is increased and their
energy slowly merges into the continuum.

IV. CONCLUSIONS

Numerical renormalization group is by now a well-
established method for studying correlation effects in quan-
tum impurity models. We have applied it here to investigate
the Anderson model with a gap in the conduction band. By
using a slightly modified version we were able to capture the
modifications in the spectral properties of the local operators
across the quantum phase transition and the positions of the
bound states formed inside the gap. In this way we were able
to construct the phase diagram of the model. The NRG pro-
vides one of the most accurate tools for investigating the
dynamical quantities of quantum impurity models. When
DM-NRG is used �such as in our case� the sum rules for the
spectral properties are satisfied up to the numerical precision.
Therefore, the NRG results for the spectral functions are net
superior to those obtained within other approaches such as
the local moment approach �see Ref. 16� which do capture
correctly only the positions of the bound states while the
spectral properties suffer because of the approximations
made.
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the weights of two bound states formed in the LM regime. The
arrows point to the critical gap �C where transition occurs.
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